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Methods to Determine Wideband System Response Utilizing 
only Narrowband Information 

1.0 Introduction 

In a host of applications in engineering, it is necessary to obtain information about 
a system over a broad range. In most cases it is not possible to evaluate the parameter 
of interest in closed form. However, either theoretical or experimental data is available 
in a narrow band. Generation of the data over the broadband is not possible or may 
be extremely time consuming. The principle of analytic continuation is utilized to 
extrapolate/interpolate the data over a wide band. The method of Cauchy [1] has 
been chosen to carry out the analytic continuation. 

The Cauchy method deals with approximating a function by a ratio of two poly- 
nomials. Given the value of the function and its derivatives at a few points, the order 
of the polynomials and their coefficients are evaluated. Once the coefficients of the 
two polynomials are known, they can be used to generate the parameter over the 
entire band of interest. 

In this chapter, Cauchy's method is utilized to generate broadband currents on 
a body from which its Radar Cross Section (RCS) is calculated. This is done from 
narrowband calculations of the currents. Particularly in the Method of Moments [2] 
generation of the response at each frequency point is very time consuming. However, 
the current and its derivatives with respect to frequency can be calculated at a few 
points using the Method of Moments. Then Cauchy's method can be used to extrap- 
olate/interpolate the current over a broad frequency range from which the RCS can 
be calculated. 

Another example is the characterization of optical systems. The time required to 
evaluate a response over a broad range of the size parameter would be prohibitive. 
The Cauchy method can be used to generate the response of interest over a broadband 
from the value of the function at some discrete points. 

The Cauchy method has wide application. A third example is in the area of filter 
analysis. In the laboratory it is not always possible to make accurate broadband 
measurements. This problem is especially severe in the case of measuring the transfer 
function of a filter in the stop band. The signal to noise ratio may be too low to be 
confident about the measurements of filter characteristics. Here the Cauchy method 
could be used to generate broadband information from measured narrowband data. 

Yet another area of application for the Cauchy method is that of device character- 
ization. A very useful tool in computer aided design would be an online description 



of the characteristics of many devices. But, since each device could be used under 
different operating conditions, each with its own frequency characteristic, the memory 
required to describe all devices would be prohibitive. Here the Cauchy method could 
be used to generate broadband information while storing the measured data at only 
a few points. 

The choice of polynomial orders is restricted by the information we have. While 
it is true that the more information we have the higher we can choose the orders, 
this is not always desirable. In filter analysis especially, the choice of the order of the 
polynomials is very important. 

In this work the Cauchy technique is used to solve the above problems. In each of 
the cases mentioned above the Cauchy technique would save a significant amount of 
program execution time or computer memory while still producing accurate results 
over broadband frequencies. The method is tested and numerical results are presented 
along with two examples of the method as a time-saving device. 

2.0 The Cauchy Method 

Consider a system function H(s). The objective is to approximate H(s) by a ratio 
of two polynomials A(s) and B(s) so that H{s) can be represented by fewer variables. 

Consider p , 

H(s) „ m=sjw (2.i) 

Here the given information could be the value of H(s) and its Nj derivatives at some 
frequency points Sj, j = 1,... J. If Hn{sj) represents the nth derivative of H(s) at 
point s = Sj, the Cauchy problem is: 

Given H^(Sj) for n = 0,... Nj, j = l,...J, find P, Q, {ak, k = 0,... P},and{bk, k = 

0,...Q}. 

The solution for {ak} and {bk} is unique if the total number of samples is greater 
than or equal to the total number of unknown coefficients P + Q + 2 [1], i.e. 

N = J2(Nj + l)>P + Q + ^ 

By enforcing the equality in equation (2.1) one obtains 

A(s) = H(s)B{s) (2.2) 



Differentiating the above equation n times, and evaluating the expressions at point 
Sj, results in the binomial expansion, 

A(n)(^) = Enc»^(n_i)(^)ß(,)(^) (2-3) 

where, 

t=0 

nCi = 
n\ 

(n — i)\iV 

n! represents the factorial of n. 

Using the polynomial expansions for A(s) and B(s), equation (2.3) can be rewritten 

as 
p Q 

53 A(i.n),*a* = 53 B0>) A (2-4) 
fc=0 *=0 

where 

A(i,n),fc 
fc! Jfc-n) 

(fc-n)!'"' 

ib! 

4fc-n)u(fc - n) 

n 

By.»).* = E^T^^'H^'M^ " ° 
t=0 (,K —tj. 

= 0,1, ....iVj, j = 1,.. J, where u(fc) = 0 for k < 0 and = 1 otherwise. 

Define, 

A = A(j»,o, ^(j».i» • • • ^0>).p 

B = ■ß(j,n),05 #(j,n),l> • • • B(j,n),Q 

[a] = [ a0,ai,a2,...ap j 

[6]=[6o,61,62,...6<3]
T 

The order of matrix A is N x (P + 1) and that of B is iV x (Q + 1). 

[A]a = [B]b 
Then, equation (2.4) becomes 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 



or 

B 
a 
b 

= 0 (2.12) 

For ease of notation, define [C] = [A| - B]. C is of order N x (P + Q + 2). A 
Singular Value Decomposition (SVD) of the matrix C will give us a gauge of the 
required values of P and Q [3]. A SVD results in the equation 

[U][S][Vr 
a 
b 

= 0 (2.13) 

where the superscript H indicates the matrix Hermitian i.e. the conjugate transpose 
of the matrix. The matrices U and V are unitary matrices and £ is a diagonal matrix 
with the singular values of C in descending order as its entries. The columns of U 
are the left eigenvectors of C or the eigenvectors of CCH.   The columns of V are 
the right eigenvectors of C or the eigenvectors of CHC. The singular values are the 
square roots of the eigenvalues of the matrix CHC. Therefore, the singular values of 
any matrix are real and positive. The number of nonzero singular values is the rank 
of the matrix in equation (2.12) and so gives us an idea of the information in this 
system of simultaneous equations. If R is the number of nonzero singular values, the 
dimension of the right null space of C is P + Q + 2 - R. Our solution vector belongs to 
this null space. Hence to make this solution unique, we need to make the dimension 
of this null space 1 so that only one vector defines this space. Hence P and Q must 

satisfy the relation 
R + l = P + Q + 2 (2.14) 

Hence, the solution algorithm must include a method to estimate R. This is done by 
starting out with the choices of P and Q that are higher than can be expected for the 
system at hand. Then we get an estimate for R from the number of non-zero singular 
values of the matrix C. Now, using equation (2.14) we get better estimates for P and 
Q. Letting P and Q stand for these new estimates of the polynomial orders, we can 
recalculate the matrices A and B. Therefore, we come back to the relation 

[C] 
a 
b 

= [A|-B] a 
b 

= 0 (2.15) 

For reasons Many methods to solve equation (2.15) are well documented [3]. 
indicated below, we choose the method of Total Least Squares (TLS) 

The usual approach to solve equation (2.15) is that of Least Squares (LS). In this 

approach, the equation is rewritten as: 

[C]"[C] 
a 
b 

= 0 (2.16) 

The solution for is taken as the eigenvector corresponding to the zero eigen- 

value of the resulting matrix. However, as we have seen, it is important to limit the 



rank of the null space of the matrix [C] to one. But, this approach has an extra step 
of a matrix multiplication. Also, since the eigenvalues are not sorted, it is additional 
work to find the number of non-zero eigenvalues. 

A better approach would be the Total Least Squares(TLS) [4]. Since the elements 
of the matrix C are affected by measurement errors and noise, the optimal solution 
of this equation must take into account the effect of the noise in the matrix elements. 
The LS approach fails to do so. As shown in [4], the Total Least Squares is the 
optimal approach when the matrix is affected by noise. 

[C] is a rectangular matrix with more rows than columns. Another SVD of this 
matrix brings us back to the equation 

[U][£][V]" 
a 
b 

= 0 (2.17) 

By the theory of the TLS, the solution is proportional to the last column of the 
matrix V. Since any constants of proportionality cancel out while dividing the two 
polynomials, we can choose 

a 
b 

= [V]P+Q+2 (2.18) 

3.0 Applications of the Cauchy Method 

3.1    The Method of Moments 

The Method of Moments yields remarkably accurate solutions to integral equations 
arising in electromagnetic scattering and radiation problems. It approximates the 
interactions of complicated bodies with a set of smaller, easily solvable interactions. 
The currents are approximated by a linear combination of some known basis functions. 
The problem then of extrapolating the current density, as a function of frequency, 
reduces to finding the coefficients in the linear combination. This approach allows 
the problem to be written as a matrix equation with the unknown coefficients as the 
solution to the equation. The Method of Moments finds it greatest advantage in the 
widespread use of the computer. But, its major limitation is that a large matrix 
equation has to be solved at every frequency point of interest. If a large system is to 
be studied, the program execution time may be as long as days. 

The Cauchy method can partially solve this problem. The Method of Moments 
program could generate information over a limited band from which the Cauchy 



method could generate broadband information. 

3.1.1    Interfacing with the Method of Moments 

The Cauchy method can easily be incorporated as part of a Method of Moments 
program. The Method of Moments converts a linear operator equation into a matrix 
equation of the form 

[V] = [Z][I] (3-1) 

Here, [I] is the vector of coefficients in the representation of the current as a linear 
combination of basis functions. [V] is the known excitation to the system,^ while [Z] 
is the matrix that describes the interaction of the currents and the excitation. 

Differentiating the above equation with respect to frequency results in a binomial 

expansion. 

[V]' = [Z]'[I] + [Z][I]' 

* [/]' = [ZV1 [[V]' - [Z}'[I]} (3.2) 

In general, 

[/](») = [Z]-1 
71-1 

[y](n)_^na.[Z](n-0[7]( (3-3) 

In the above equations, [V]^ is the vector with each element of [V] differentiated 
with respect to frequency n times. Similarly, [Z\^ is the matrix generated by differ- 
entiating each element of the matrix [Z] with respect to frequency n times. 

Hence, using a Method of Moments program, we can generate all the information 
needed to apply the Cauchy method. The use of derivative information saves execu- 
tion time because no new matrix inversions are required to generate the additional 
information. Hence, evaluation of a derivative at a frequency point required OCA''2) 
operations as opposed to solving for the currents at a frequency point which takes 
0(N3) operations. Each element of the solution current ([/]) vector is treated as our 
function H(s). Given the current and its derivatives at some frequency points, we 
can use the Cauchy method to approximate the current at many more points. 

3.1.2    Numerical Examples 

To test the Cauchy method, Radar Cross Sections (RCS) of five different perfectly 
conducting three dimensional bodies were calculated over wide frequency bands. A 
program to evaluate the currents on an arbitrarily shaped closed or open body using 
the Electric Field Integral Equation and triangular patching as described in [5] was 
used. The triangular patching approximates the geometry of the surface of the body 
with a set of adjacent triangles. The program then uses these currents to evaluate 
the RCS of the body. It was modified to also calculate the first four derivatives of the 



currents with respect to frequency. This information was used as input to a Cauchy 
subroutine. The original Method of Moments program was used to calculate the RCS 
without the Cauchy method. The two RCS plots were compared to show the accuracy 
of the Cauchy method. 

The bodies chosen were a sphere, a square plate, a disk, a concave, and a convex 
hemisphere. In all cases the currents and their first four derivatives were evaluated at 
five frequency points. Hence, the total information allows a maximum of 5 x (4 +1) = 
25 coefficients combined in the two polynomials of equation (2.1). In the application 
of Cauchy method to the Method of Moments, it was found that no singular values 
of the original matrix [A\ - B] are zero. This is to be expected, since, the current, 
as a function of frequency, is not a ratio of two polynomials. Hence, the higher 
the polynomial orders we choose, the more accurate the approximation would be. 
Therefore, in this application, the step of estimating Ä,P,and Q, in equation (2.14) 
is bypassed. Given the 25 samples, the numerator polynomial was of order 11 while 
the denominator was a polynomial of order 12. Physically we know that for the 
polynomial approximation to be stable, the numerator polynomial must be of lower 
order than the denominator polynomial. 

The motivation to apply the Cauchy method to the Method of Moments is to 
save program execution time. To get an idea of how much time can be saved, the 
program was timed for two of the above bodies and compared to the original Method 
of Moments program. The two bodies chosen were the sphere and the plate. 

In the first example a sphere of radius 0.3m was analyzed. The sphere was tri- 
angularized using 182 nodes and 540 edges. Because the sphere is a closed object, 
this results in 540 unknowns in the expansion of the current in terms of the basis 
functions. The currents on the sphere and its first four derivatives with respect to 
frequency were evaluated at five frequency points. The points chosen were in the 
range A = 0.30m and A = 0.84m at a spacing of 0.135m. Using this information and 
the Cauchy method the current on the sphere was calculated for 51 points in the same 
frequency range. Using these currents the RCS of the sphere was calculated at the 51 
frequency points. The time taken for this calculation is compared to the time taken 
by the original Method of Moments program to evaluate the RCS at five frequency 
points in the same range. 

Method of Moments (5 points) :47mins. 56secs. 
Cauchy Method (51 points)       :57mins. 57secs. 

To generate the same information at 51 points the Method of Moments program 
would take approximately 8hrs.8mins. 

In Figure 3.1 we see the results of applying the Cauchy method to the evaluation 
of the RCS of a sphere. Here the RCS is plotted over a decade bandwidth. This 
bandwidth was broken up into 3 ranges: 
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0.6m < A < 1.0m 
1.0m < A < 1.8m 
1.8m < A < 6.0m 

In each of the three ranges the current and its first four derivatives were eval- 
uated at five equally spaced points using the Method of Moments program. Using 
this information the polynomials in equation (2.1) were formed. This rational poly- 
nomial was used to evaluate the current at 51 points in each range. Also, the original 
Method of Moments program was used to calculate the currents at a few points in 
the decade bandwidth. The currents were used to calculate the RCS of the sphere in 
this bandwidth. As can be seen from the figure, the agreement between the results 
from the use of the Cauchy program and the original Method of Moments program 
is excellent. 

As a second example, a square plate of side 0.3m was analyzed. The plate was 
triangularized using 169 triangle nodes and 456 edges. In the Method of Moments 
formulation the nodes on the boundary of an open object are not unknowns. Hence, 
the number of unknowns in this case was only 408. The procedure followed is similar 
to the analysis of the sphere. Here the five frequency points chosen were in the range 
A = 0.15m and A = 0.30m at intervals of 0.0375m. Using this information and the 
Cauchy method the currents on the plate were evaluated at 201 frequency points. The 
time taken for this calculation is compared to the time taken by the original Method 
of Moments program to evaluate the RCS at five frequency points in the same range. 

Method of Moments (5 points) :21mins. 50secs. 
Cauchy Method (201 points)     :27mins. 47secs. 

To generate the same information at 201 points the Method of Moments program 
would take approximately 14hrs.38mins. 

All programs were executed on an IBM RS6000 platform running AIX. 

Figure 3.2 shows the application of this technique to the evaluation of the RCS 
of a plate. Again, to evaluate the RCS over a decade bandwidth, three intervals 
were chosen and the two polynomials of equation (2.1) formed in each interval. The 
numerator polynomial had order 11 while the denominator polynomial had order 12. 
The intervals chosen were: 

0.1m < A < 0.15m 
0.15m < A < 0.3m 
0.3m < A < 1.0m 

The rational polynomial was used to evaluate the currents at 201 points in each range. 
The original Method of Moments program was used to evaluate the RCS of the plate 
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in this decade bandwidth. As can be seen from the figure, the agreement between the 

two results is excellent. 

The third example is a disk of radius 0.3m. The disk was triangularized using 
142 nodes and 460 edges. Of these only 440 were interior nodes. Figure 3.3 shows 
the RCS of the disk over a decade bandwidth. Here too, the decade bandwidth was 
broken up into three intervals and polynomials of order 11 and 12 formed in each 
interval. The rational polynomial was used to evaluate the currents and then the 
RCS of the disk at 51 frequency points in each range. The intervals chosen were: 

0.6m < A < 2.4m 
2.4m < A < 4.2m 
4.2m < A < 6.0m 

Figures 3.4(a) and 3.4(b) show the results of the final example of the Cauchy 
technique applied to the Method of Moments. The RCS of a convex and a concave 
hemisphere was calculated over a decade bandwidth. Figure 3.4(a) shows the RCS 
of a convex hemisphere while Figure 3.4(b) shows the RCS of a concave hemisphere. 
The radius of both hemispheres was 0.3m. The convex hemisphere had 257 nodes 
and 736 edges. This resulted in a problem with 704 unknowns. The concave hemi- 
sphere had 316 nodes and 910 edges. Of these 875 were interior nodes. The decade 
bandwidth was broken into the following ranges: 

0.6m < A < 1.0m 
1.0m < A < 2.6m 
2.6m < A < 6.0m 

As in the case of the disk, for the hemispheres too, the two polynomials of equation 
(2.1) were formed in each of the three ranges. In both cases the Method of Moments 
program evaluated the currents and its first four derivatives with respect to frequency 
at five points in each range. This information was used by the Cauchy subroutine 
to approximate the currents at 51 points in each range from which the RCS of the 
hemispheres were calculated at 51 points in each range. Also, the original Method 
of Moments program was used to calculate the RCS over the decade bandwidth. As 
can be seen from Figure 3.4, the agreement in each case is excellent. 

3.2    Optical Computations 

The calculation of either the scattering efficiency or the intensity is highly compu- 
tationally intensive. If these parameters are desired over a broad range and at finely 
spaced points of the size parameter, the time required for the calculations could be 
prohibitive. The Cauchy method would solve this problem by needing the calculations 
to be done at a much coarser spacing and interpolate the parameter of interest. 

11 
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This application was tested on the scattering efficiency of a sphere as a function 
of size parameter[6]. The sphere had an index of refraction of 2.0. The original data 
calculated the scattering efficiency at a spacing 0.002 in the size parameter. The range 
of the size parameter was from 7.0 to 8.0. Hence, the original data had 501 points. 
The Cauchy program needed a spacing of 0.01 in the size parameter to accurately 
calculate the scattering efficiency of the sphere at the original 501 points. This cuts 
down the program execution time by a factor of 5. The input to the Cauchy program 

is shown in Figure 3.5(a). 

Because all computer calculations suffer from round-off error, most of the singular 
values returned from the SVD subroutine are not exactly zero. The choice of the 
threshold was such that a singular value was considered zero if it was 18 orders of 
magnitude lower than the largest singular value. This choice of the cutoff was chosen 
by the limited precision of the computer arithmatic i.e. the limited dynamic range of 
the computer. Using this threshold, only 72 singular values could be considered not 
equal to zero. Hence, the estimate for R is 72. Using this and equation (2.14), the 
choice for the polynomial orders was reduced to 35 for the numerator and 36 for the 
denominator. Using these polynomials the scattering efficiency was calculated at the 

original 501 points. 

Figure 3.5(b) shows the results of the application of the Cauchy method to optical 
computations. The dotted line represents the original data while the unbroken line the 
interpolated data. As can be seen, the two plots are nearly visually indistinguishable. 
Also, even though the input data to the program did not have of the peaks of the 
Scattering Parameter, the Cauchy program was able to reproduce them. 

3.3    Filter Analysis 

The Cauchy method can also be used in analysis of filters over broad frequency 
ranges. A filter response is a ratio of two polynomials and hence lends itself easily 
to the use of a Cauchy program. This has practical application to the problem of 
generating the stop band response given the pass band response or the reverse i.e. 
generating the pass band response given some data from the stop band. 

A filter transfer function (S2i) was measured using a network analyzer at frequency 
points in and out of the filter passband. The filter had its 3dB points at 4.98GHz 
and 6.61GHz. Hence, the filter had a passband of 1.63GHz with a center frequency 
of 5.80GHz. The filter response was measured at 415 equally spaced points in the 

frequency range 4.31GHz to 7.42GHz. 

In the first application, the response over the entire band of measurement was re- 
covered using mostly passband information. 51 equally spaced points, in the frequency 
range 4.79GHz to 6.96GHz, were chosen as input to a Cauchy program. Because we 
are dealing with measured data, we do not have any information about the derivative 
of the transfer function with respect to frequency. 

The threshold was chosen such that a singular value was considered zero if it 
was 14 orders of magnitude lower than the largest singular value. After the program 
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Figure 3.5: Scattering efficiency as a function of size parameter 
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checked for the number of non-zero singular values, the estimate for R was 16. The 
order of the numerator polynomial was chosen to be 7 while that of the denominator 

polynomial was chosen to be 8. 

In Figures 3.6(a) and 3.6(b) the results from the Cauchy program are described. 
Figure 3.6(a) shows the magnitude response while Figure 3.6(b) shows the phase 
response of the filter. As is often the case with filters, the magnitude response was 
considered more important. Hence, the phase response was allowed to show a poor 
agreement so as to maximize the agreement of the magnitude response. If a 10% 
error in the magnitude were acceptable, the extrapolation is valid for 0.39GHz. This is 
6.7% of the center frequency and 23.9% of the bandwidth. For frequencies beyond the 
passband, the extrapolation is accurate within 10% up to 7.42GHz, the frequency till 
which data was available. Hence, we have generated accurate data over a bandwidth 
of 3.32GHz starting with data over a bandwidth of 2.16GHz. 

In the second application, data from the stop band and a little from the passband 
was used to interpolate into the passband. Here too the choice of threshold is very 
important. Using the same threshold as in the first application, the estimate of R 

remained the same. Hence, in this case too, the numerator polynomial had order 
7 while the denominator had order 8. In this case, 23 equally spaced points from 
4.31GHz up to 5.35GHz and 28 equally spaced points from 6.20GHz to 7.42GHz were 
used to interpolate into the passband. This represents on interpolation of 0.85GHz, 
which is 14.6% of the center frequency or 52.7% of the bandwidth. Figures 3.7(a) 
and 3.7(b) show the results of this application. Figure 3.7(a) is the reconstructed 
magnitude response and Figure 3.7(b) is the reconstructed phase response. Again, 
since more attention is paid to the magnitude response, the phase response shows 

poorer agreement with the true response. 

In both figures the dotted line represents the measured data and the continuous 

line the results of the Cauchy program. 

3.4    Device Characterization 

An application of the Cauchy method is in creating a database of many devices 
working in varying operating conditions. The Cauchy program would require the 
value of a parameter at a few frequency points and use this information to evaluate 
the parameter over a wide frequency band. Over many devices, and their operating 
conditions, this would yield significant savings in memory requirements. 

To test this application the Y-parameters of a UM PHEMT were measured over 
the range of 1.0-40.0GHz. Just five of these points were used as input to the Cauchy 
program. The points chosen were at the frequency points 1.0GHz, 10.0GHz, 20.0GHz, 
30.0GHz, and 40.0GHz. This resulted in a numerator polynomial of order 1 and 
denominator polynomial of order 2. Here again, the step of estimating R, P, and Q 
is bypassed. Figure 3.8(a) shows the magnitude (|Yu|) reconstructed over this broad 
frequency range. Figure 3.8(b) shows the phase (/.Yn) over the same range. As can be 
seen the agreement with the measured values and the interpolated values is excellent. 

16 



(a) Magnitude response: |52i| 
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Figure 3.6: Generation of stop band response using pass band data. 
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(a) Magnitude response: |Vii| 
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Figure 3.8: The Cauchy method applied to Device Characterization. 
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4.0 Effect of Noise in the Data on the Cauchy 
Method 

The Cauchy method [7] has been shown to provide accurate broadband informa- 
tion from narrowband data. The method deals with approximating a function by a 
ratio of two polynomials. Given the value of the function and its derivatives at a 
few points, the order of the polynomials and their coefficients are evaluated. Once 
the coefficients of the two polynomials are known, they can be used to generate the 
parameter over the entire band of interest. The Cauchy method was shown to be 
applicable to the cases where the input data was measured values of the function and 

not its theoretical values. 

However, no measuring instrument is perfect. Each measurement has, added to the 
signal, an unwanted noise component. Reference [7] does not discuss how this noise 
affects the results from the Cauchy method. The presence of noise in the data limits 
the effectiveness of the method. In this chapter we try to quantify the limitations of 
the Cauchy method when the input data is subject to contamination by noise. 

Throughout this work, we assume that the noise is additive, stationary, zero 
mean, and Gaussian. This assumption is approximately valid for most measuring 
instruments. Using this assumption, the probability density function (PDF) of the 
parameter, as a function of frequency, is evaluated. This is compared to the PDF 

approximated by a computer numerical simulation. 

To make the problem tractable, certain simplifying assumptions are necessary. 
This includes assuming that the coefficients of the polynomials in the Cauchy method 
are independent random variables. As the theory will show, this assumption is not 
strictly true. However, the error introduced in the PDF due to this assumption is 

minimal. 

Another assumption made is that the noise affects each measurement indepen- 
dently. The noise is also assumed to affect each measurement, on average, equally. 
This means, that the average power in the noise in each measurement is assumed 
constant over repeated measurements. This assumption too is approximately valid 

for most measuring systems. 

Using these assumptions we derive the theoretical PDF of the estimate of the 
parameter as a function of frequency. The theoretical PDF was verified by numerical 

simulations. 
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4.1    The Effect of Noise on the Solution Vector 

As shown in Chapter 2.0, the solution vector belongs to the invariant subspace that 
is spanned by the right singular vector [V]P+Q+2. This singular vector is associated 
with the smallest singular value. However, because of the noise in the data, the entries 
of matrix C are perturbed from their true values. Hence, the solution vector is also 
perturbed. We need to quantify the perturbation of this subspace. 

Notation In this work, a perturbed parameter or matrix will be represented by a 
tilde (~) above the corresponding unperturbed parameter or matrix. 

4.1.1    Perturbation of Invariant Subspaces 

Let, 11 denote the set of real numbers, Kn, the set of real vectors of length n, and 
TZnXp the set of real matrices of order n x p. 

Consider an arbitrary matrix AeTlNxP with P < N. Let A = A + E, where E 
is the perturbation to the matrix A, and 

I ax 0   \ 
0 S2 

V 0 0  / 
1 P-\ 

[UT][A}[V] = 

l 

p-i (4.1) 
N-P 

Here the figures below the matrix indicate the number of columns in each submatrix 
while the figures to the side of the matrix indicate the number columns in each 
submatrix. Also, 

u   =   (Ul\U2\U3) 

V   =   (Vl\V2) 

Here, m € ft", U2 € K»*lp-l\ U3 € KN*lN-p\ vt 6 Kp, and V2 € KP*V-». 
<7i is the singular value corresponding to the left singular vector ux and the right 
singular vector v\. This singular value can be the one of interest and not just the 
largest singular value. In the Cauchy method the singular value of interest is the 
smallest or the zero singular value. S2 is the diagonal matrix with the rest of the 
singular values of C as its entries. These singular values can be ordered arbitrarily 
as long as the columns of U and V are permuted appropriately so as to maintain the 
equality of equation (4.1). 

If, 
/ 7n    912 \ 

{U]T[E][V} =     g2i   G22 (4.2) 
\ 93i   Gzi ) 

where 7n € K, <7i2,<72i,<73i € Hp~\ G22 € ftp-lxP"1, and G32 € -RN-P-XXP-X^ and 

if <7i is not repeated as a singular value, then [8] 

vl = vi + V2 (all -Xiy'h + O (\E\ty (4.3) 
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where, 
h = <J\g\2 + £2521 

4.1.2    Perturbation of the Solution in the Cauchy Method 

In all measurements the true value of the measured parameter (here H{) is per- 
turbed by an additive noise component. Hence, 

Hi = Hi + e{ 

where, Hi is the value of Hi after it has been perturbed by noise e,-. 

In the following discussion we are assuming: 
1) The noise is only in the measurement of the parameter [H{s)], not in the measure- 

ment of the frequency (s). 

2)Cx = 0 has a solution which is unique to within a constant. 

=4- a) x = Ui, with V\ — 0 
b) ax = 0 is a simple singular value. This assumption is valid because in the solution 
procedure we made sure that the rank of the null space of C is one. 
3) H(si) = H(si) + ei, {e,}^! are zero mean, Gaussian, uncorrelated, and have equal 

variances a2. 

Using the above notation for a perturbed matrix and equation (2.15), we get 

[e 
a 

b 
~ 0 (4.4) 

where, 

[C) = 

1     Sy 

1      S2 

-Hx       -HlSl...- #is? 
-Hi       -H2S2 ■■■- H2s^ 

.Q 
1   SN ■ • • sjv   -HN   -HN$N ■■■ ~ HNSN _ 

(4.5) 

where, 
P= estimate of the order of the numerator, 
Q= estimate of the order of the denominator, 
Af= number of sample points. 

=* [C] = [C] + [E] (4-6) 

where, E is the additive error to the matrix C due to noise in the data. Hence, 

[E]=   [0|Ex] (4-7) 

where, [0] is a zero matrix of order N x P + 1 and 

m = 
ei    eiSi 

e2    e2s2 

ei«? Q ■ eiSi 

e232 • • • e2s2 

2 Q e-N   £NSN   CTV5W ... eNSN 

(4.8) 

NxQ+l 
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=»£?! = - 

ei 0 0   . ..    0  1 "l      St s2 Q 1 
•      «1 

0 e2 0    . ..    0 1    s2 s2 
• •    s2 

0 0 0    . • •   e-N . 
-'s 

_ 1   sN 
„2 sN    . 

WxAT NxQ+1 

[U\T[E][V] = [U)T[0\Et 

1 
u1 ^1 
vl v2\ 
1 P + Q-\ 

p + l 

(4.9) 

(4.10) 

UTEtv[\UTEX 
Using the notation of section 3.1, 

[U}T[E}[V] = \UT Etvl\UT EX 
7n 9i2 ^ 
#21      G22 
g3i   G32 ) 

(4.11) 

(4.12) 

Since vi is the solution of the unperturbed Cauchy equation 

a 
b 

= 0 

and v'i is the vector of the last Q + 1 entries of i>i, v'[ is the vector of denominator 
coefficients. Also, the singular value of interest (<Ti) is zero. Hence, in the notation 

of section 3.1, 

(4.13) 

(4.14) 

(4.15) 

h   =   otg\2 + £2*721 

=   £2521 

also, using equation (4.3) 

vi=vt + V2^lg2i+ 0(jEll) 

Hence, gu is of no consequence. 

From equation (4.12), 
/ 7n \ 

\ 931   ) 

Using equation (4.9), and the fact that v'[ is the vector of denominator coefficients, 

(4.16) 

Etv'l = - 

et    0     0 
0    e2    0 

0 
0 

. 0    0     0    ...   eN 

de(st) 

de(s2) 

de(sN) 

(4.17) 
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where, de(si) = £?=(A
5?> is the value of the unperturbed denominator polyno- 

mial evaluated at s,-. For convenience we define a new vector e as 

=> e = £1^! = 

eide(5i) 
e2ote(.s2) 

(4.18) 

Using this equation, the fact that U = [ui\U2\U3], and equation (4.16), 

921 = Uje (4.19) 

Therefore, using equation (4.15), 

(4.20) 

Since the elements of e are Gaussian random variables, vy is, to the first order of 

approximation a Gaussian random vector. 

Now, using equation (4.1) and the fact that G\ = 0, 

C = [/2E2Vf 

where C+ is the psuedo-inverse of C. 

Therefore, to the first order of approximation, 

t?i = ui + C+e 

(4.21) 

(4.22) 

Using the fact that C+ is unperturbed and the noise is zero mean, the expectation 

value of the solution vector (vi) is given by 

E(Vl)   =   ui + C+E(e) 

=    Vi 

(4.23) 
(4.24) 

Here E is the expectation operator and not the error matrix. Therefore, to the first 

order of approximation, the estimator is unbiased. 

The covariance matrix of vi is given by, 

cou(vi) = E[(5i - vi)(t)i - vi)T] 

Using equation (4.22), we have 

E[(vl-v1)(v1-v1)
T]   =   E[C+eeTC+T] 

=   C+E[eeT]C+T (4.25) 
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Now, 

ee 

eide(si) 
e2de(s2) 

[eide(si)e2de(s2). ■ . e^de^s^)] (4.26) 

ewde(s/v) 

Therefore, the ij-th. entry of this matrix is given by, 

[e. eT]ij = eiejde(si)de(sj) (4.27) 

Since e,- and ej are assumed to be zero mean, independent, and identically distributed 
with variance a2, 

E[eiej] = aHij (4.28) 

where, 

&ij 
1   if i = j 
0   otherwise 

■z. TJ\ E[ee 

de2(Sl)        0 0     . 
0        de2(s2)    0     . 

0 
0 

0 0 0 de2(sN) m 

(4.29) 

=>E[(vl-vl)(v1-vl)
i} = a2C T] _ Jln\ 

de2{sx)        0 0 
0        de2{s2)    0 

0 
0 

0 0 0 de2(sN) 

C+T (4.30) 

Letting C* = Cij, the autocovariance of the i-th. entry of vt is given by 

N 
EtC+ee^C+l^o-^c^e2^) (4.31) 

i=l 

This is the variance of the z'-th entry in the vector of coefficients. Hence, if z < P + 1, 
we are dealing with a numerator coefficient, else we are dealing with a denominator 
coefficient. 

Since, we have solved a matrix equation in which the elements of the matrix are 
Gaussian random variables, each element of the solution vector is a Gaussian random 
variable. Also, the numerator and denominators are linear combinations of the co- 
efficients. Hence, the numerator and denominator are Gaussian random variables as 
functions of frequency. Hence, to completely characterize the numerator and denom- 
inator random variables, we only need their expectation values and variances. 

To make this problem of the ratio of two Gaussians solvable, we have to assume 
that any two coefficients are independent of each other. Hence, the cross-covariance 
matrix of v\ is assumed to be diagonal. 
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Now, 

A(5) = £>/- (4.32) 
fc=0 

ß(s) = ^6fc5
fc (4.33) 

fc=0 

Therefore, 

E[Ä(s)] = f>[äfc]5
fc (4-34) 

fc=0 

and Q 

E[B(s)} = Y/E[bk]sk (4.35) 
k=0 

However, since to the first order of approximation the coefficients are unbiased, 

E[Ä(s)} = £ aks
k (4-36) 

k=o 

and 

E[B(s)} = E 6*3* (4-37) 
k=0 

Therefore, the estimators for the numerator and denominator as a function of 
frequency are unbiased. However, as we will see, since the ratio of two variables is 
not a linear function, this does not mean the final estimator is unbiased. 

To calculate the variances of the numerator and denominator as a function of 

frequency, 

uar[A(s)] = var X) ä«s' 
U=o 

(4.38) 

Using the assumption that each coefficient is independent of the others, 

P 
var[A{s)] = y£,™r{äi)s

2i (4.39) 
fc=o 

Therefore, from equation (4.31), 

P+l N 
* var[A(s)} = a2 £ s2i £ <%<&&) (4.40) 

Similarly, 
P+Q+2 N 

var[B(s)} = a2   £   s2^^^) (4.41) 
i=F+2        j=l 

Let N = E[A(s)}, D = E[B(s)}, a2 = var[A(s)], and b2 = var[B(s)]. Therefore, 
the problem has reduced to:   Given the means and variances of two independent 
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Gaussian random variables, what is the PDF of their ratio? This problem has been 
solved in reference [9]. 

In the notation of [9], if N and D are independent Gaussian random variables 
with means N and D respectively, and variances a2 and b2 respectively, and if 

E-N 
R~D 

then, the probability density function of R is given by 

1 

V    7T    blrl + a1 Zerf(Z)exP(Z2) + (4.42) 

where, 
1       (b2Nr + a2D' 

~ sJWtf \ \/b2r2 + a2 , 

and the error function is defined as 

2    tz 

«W'siL eUi 

Hence, we have the theoretical PDF of the ratio of two random variables. However, 
this density function is an approximation of the true density function. To obtain the 
true density function we would need to take into account the cross-correlation between 
the coefficients. This leads to a problem that is highly difficult to solve. 

4.2    Numerical Examples 

To test the above theory, the Cauchy method was tested with a simple example. 
As an example the function was chosen to be the testing function was 

ffW = E&S? (4-43) 

This ratio of two polynomials was evaluated at a 31 points in the range s=2.0 and 
s=4.0. Two tests were performed on this data. 

In the first test, Gaussian noise was added to the data directly. A numerical 
Gaussian random number generator was used. The power in the noise was chosen 
such that the signal to noise ratio (SNR) was 30dB. This perturbed data was used as 
input to the Cauchy program. The resulting polynomials were used to evaluate the 
parameter at s=3.0. This was considered to be one sample of the random variable 
at s=3.0. 1001 such samples were taken. A PDF estimator was used to estimate the 
PDF at s=3.0. Figure 4.1 shows the PDF found using this method. This is the plot 
marked 'Adding noise to the data'. 

In the second test, the original unperturbed data between s=2.0 and 3=4.0 were 
used as input to the Cauchy program. The unperturbed numerator and denomina- 
tor coefficients were evaluated. The means of the numerator and denominator were 
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evaluated using equations (4.36) and (4.37) respectively. Also, the variances of the 
numerator and denominator were evaluated using equations (4.40) and (4.41) respec- 
tively. Using these values of means and variances, a Gaussian random variable, with 
the numerator mean and variance, was divided with another Gaussian random vari- 
able with the denominator mean and variance. This was repeated 1001 times. The 
Gaussian random numbers were generated using the same random number generator 

as in the first test. 

The 1001 samples got from this test were used as input to the same PDF estimator. 
The result from this estimation of the PDF is shown in Figure 4.1. This plot is labeled 

'Numerical Simulation'. 

Finally, these two PDFs are compared with the theoretical PDF in equation (4.42). 
The choices of N, D, a2, and 62 are obtained from the theoretical means and variances 

used in the second test. 

At 3=3.0, using the above function 

Actual Value :0.2126 
Mean (adding noise to the data):0.2124 
Mean (dividing two Gaussians with the 
theoretical means and variances):0.1804 

Figure 4.2 shows the same three PDFs for a signal to noise ratio of 40dB. Here 
the agreement is better than in the earlier case. This is to be expected since the 
assumptions come closer to be being satisfied as the noise reduces. 

The work in this chapter is also published in [10] 

5.0 Cauchy Method with Magnitude Only Data 

In Chapter 2.0 the theory of the Cauchy method is developed assuming the knowl- 
edge of both the real and imaginary parts of the measured or numerically generated 
data i.e. the knowledge of the phase response is assumed to be known. However, in 
many important applicatons, it is difficult to accurately measure the phase response. 
A classic example of an important situtation where this difficulty arises is the mea- 
suring the RCS of a target in the X-band. The magnitude response can be measured 
accurately, however calibration for the phase is difficult, if not impossible. 

In this section we propose possible approaches to extending the Cauchy method 
to the case where only the magnitude of the data is known. Two entirely different 
approaches are possible. In the first approach, the Cauchy method can be used to 
extrapolate or interpolate the magnitude only data.   The extrapolated magnitude 
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Figure 4.1: Comparison of theoretical PDF and numerically simulated PDFs.  SNR 
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only data can then be used as input to a program to retrieve the phase from the 
magnitude. 

The second possible approach is the reverse of the above process. The magnitude 
only data can be used as input to a program that retrieves the phase from the given 
magnitude. This complex data can then be used by the Cauchy method described in 
Chapter 2.0 to extrapolate with respect to the variable of interest. 

In case of the second approach the theory of the Cauchy method does not require 
any changes. The theory of retrieving the phase from the magntiude is presented later 
in this chapter. In the case of the first approach, the theory of the Cauchy method 
must be modified to account for the fact that the given data has only magnitude 
information. 

5.1 Extrapolation with magnitude only data 

To apply the Cauchy method to magnitude only data, we begin by recognizing 
that the magnitude response of a linear, time invariant, system is an even function 
of frequency i.e., the magnitude response at /o is the same as the response at —fo. 
Hence, when modeling the magnitude response using a ratio of polynomials, the odd 
powers of frequency in equation (2.1) do not contribute to the extrapolation. The 
magnitude response \H(s)\ as a function of frequency can, therefore, be represented 
as 

Since the magnitude response is real, the coefficients a(k),k = 0,..., P/2 and 
b(k),k = 0, ...,<3/2 that define the two polynomials are real. Hence all the Her- 
mitian operations in equations (2.13), (2.16) and (2.17) must be replaced with the 
transpose operator. Other than these modifications, the Cauchy method, as described 
in Chapter 2.0 is completely applicable. 

5.2 Phase retrieval from magnitude only data 

Reconstruction of the phase from magnitude only data is an important problem. 
For minimum phase systems, the reconstruction of phase from magnitude only data 
is relatively straightforward as the phase response is given by the Hilbert transform 
of the log of the magnitude response [11], [12], [13]. Given the magnitude response 
|üT(s)|, the phase response arg[H(s)} is obtained by 

arg[H(s)} = -P 
7T 

°° ln|tf(x)| 
*/—co      X — 

dx (5.2) 

where P indicates the prinicpal value integral as the integrand has a singularity and 
is not integrable in the usual sense. 
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This relationship between the magnitude and the phase does not hold if a system 
is not minimum phase. A system is minimum phase if all zeros of the transfer function 
are in the left half plane (x = a + jw, a < 0). Unfortunately, most electromagnetic 
systems are non-minimum phase and hence equation (5.2) does not apply. However, 
there is a more general result, based on causality, that can be applied to the phase 

retrieval problem. 

It must be noted that the phase retrieval problem is inherently non-unique. A pure 
linear phase can be added to the reconstructed phase without affecting the magnitude 
spectrum. This arises from the fact that a linear phase is equivalent to a pure time 
delay in the time domain, the principle of causality implies that the time response 
has to be zero for negative times i.e., /(*) = 0,< < 0. All physical systems must be 
causal. A given magnitude response can represent a causal system only if it satisfies 

the Paley-Wiener criterion 

r HWfj, < „ (5.3) 
7-eo       1 + S2 

i.e. the integral must be bounded. Note that this is possible only if \H(s)\ is 
non-zero for all frequencies. Otherwise, if \H(s)\ is zero over any finite support, the 
term In \H(s)\ would be infinity. If H(s) = R{s) +jX(s), R(s) and X(s) are related 
by the Hubert transform [14] i.e. 

Ä(s) = _ir^w,„ (5.4) 
7T J-oo S — W 

x{s) mir miw (5.5) 
V 7T J-oo S — W 

Also, 

h(t) = - /    R(s) cos{st)ds (5.6) 
IT JO 

ut) = JL r x(s) sm(st)ds (5.7) 
■K JO 

and 

r \x{t)\Ht=l- r \R{S)\^=l- r \x{s)\^ ^ 
JO 7T J-oo 7!" J-oo 

In our case, the magnitude is given over a limited frequency range and at discrete 
frequency points. Hence, the integrals in the above equations must be replaced by 
summations. Assuming that real part R(s) is even with period 2TT from -w to TT, we 
can write the Fourier series, 
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R(s) = a0 + ^2 an cos(ns + <j>n)       0 < s < IT (5.9) 
n=l 

and by the discrete version of equation (5.5 

X(s) = ~YLan s'm(ns + <j)n)       0 < s < w (5.10) 
71=1 

i.e. the real and imaginary parts of the frequency response are defined by the same 
Fourier coefficients. 

Now, 

\X(s)\>   =   R2(s) + X\s) 

N 

a0 + Y^ ßn cos(ns + <j)n) 
71=1 

+ 
N 

]T] an s'm(ns + (f>n) 
n=l 

(5.11) 

where, N is chosen as a cut off to limit the number of unknowns to a finite number 
based on the information available. We can now use an optimization routine to 
minimize the error, 

E(s)=    |X(5)|2- 
N 

a0 + ^2 an cos(ns + <f>n) 
71=1 

N 

^ansin(ns + <£n) 
.71=1 

(5.12) 

and the phase can be retrieved from 

<K*) = T 
Y,%=i an sin(n5 + ^n)] 

00 + En=l °n COs(nS + <£„)] 
(5.13) 

6.0 Conclusions 

This work has presented a technique for the determination of wideband response 
of a system given only narrowband information. Based on the Cauchy method starts 
with assuming that the parameter of interest, as a function of frequency, can be 
approximated by a simple rational polynomial function. This assumption is valid for 
many physical systems. The method evaluates the order of the polynomials and the 
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coefficients that define them. Using this form the parameter is evaluated at many 
frequency points. It is shown that the technique has applications to many practical 
problems. In our research the technique is applied to the Method of Moments, optical 
systems, filter analysis, and device characterization. In all applications the Cauchy 

method has shown to save time and memory. 

This work has also begun to explore the possibility of applying the Cauchy method 
to magnitude only data. Two possible approaches are conisdered, both of which draw 
on the ability to recover the phase from the magnitude only data. A phase retrieval 

algorithm has been presented. 

It must be pointed out that the Cauchy method is completely general and can 
be used to extrapolate or interpolate with respect to any variable other than fre- 
quency. However, in many applications in electromagnetics, frequency is the variable 

of interest. 
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